Use of Recycled Shingles in HMA Pavements

HMA Construction – Moving Forward Future of the Industry March 20, 2007

> R.A. Sines, P.E. P. J. Keating Company

- 10 million tons of asphalt Shingles enter waste stream each year
 - 1 million tons manufacturer waste
 - 9 million tons tear-offs or used Shingles
 - Third largest construction material waste
- ARMA analyzed a number of recycling options and identified HMA as the best use
 - Volume of waste used
 - Ease of recycling since Shingles composed of materials routinely used in HMA

Why use Shingles? Economic benefits NAPA estimates cost savings per ton of HMA ranges from \$2.15 to \$3.30 Not all benefits accrue to all users Tipping fees and handling costs vary Actual savings more likely to be \$1.25 to \$1.85 RAP sources are declining It's the right thing to do Process can be engineered to provide HMA with equivalent performance

- Potential benefits from the use of Shingles in HMA include:
 - Improved resistance to pavement cracking
 - Due to reinforcement from fibers
 - Improved resistance to rutting
 - Due to fibers and increased stiffness of binder
 - Reduced costs for the production of HMA
 - Conservation of natural resources
 - Conservation of landfill space
 - Reduced costs for Shingle waste disposal
 - Studies ongoing at this time
 - At this time consider impact as neutral

Shingles typically contain:
Asphalt binder
Tear-offs contain 30 – 40% binder
Manufacturer waste 18 – 22% binder
40 to 60% hard rock granules and fillers
1 to 12 % fiber, felt, and miscellaneous materials

Processing Shingles for Use in HMA
The age old engineering question
How do you make a square peg fit into a round hole?

Square Peg

Square Peg In Round Hole

Asphalt 100% Recyclable

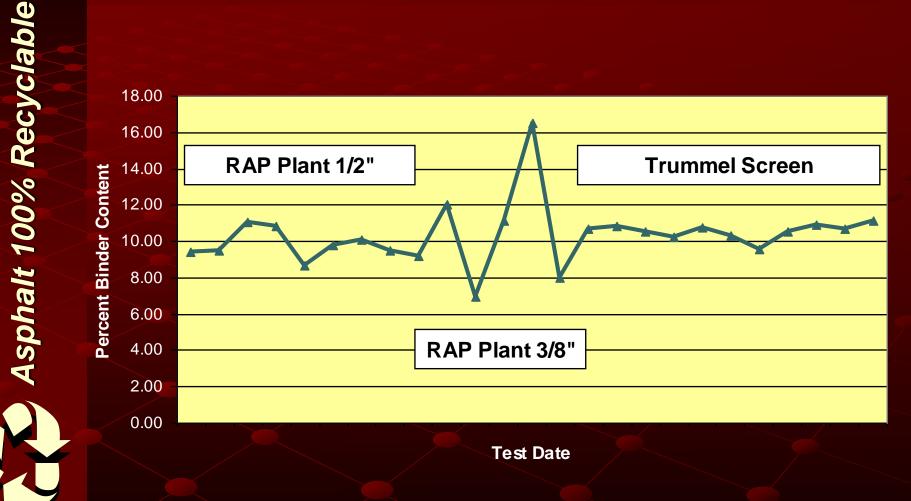
Processing Shingles for Use in HMA

Various equipment has been tried to grind the Shingles into a usable product

- RAP Plant
- Tree shredding approach

Peterson Pacific

- **4**0 60 TPH
- Dust Control
- Screen size



- Carrier aggregate used to keep Shingles from agglomerating and allow to flow through cold feed bin
 - RAP, 3/8" Stone, Washed stone screenings, Natural sand
- Blending by volume
 - Blending methods
 - ASTEC dual bin blender
 - Ground blending with additional processing

- Ground blended material is processed to minimize binder content variation
 - Trummel screen
 - RAP plant
- Ground blending problems
 - Expense
 - Binder content variability
 - Could be a result of tear-off Shingle binder contents

Sieve (mm)	12.5	9.5	4.75	2.36	1.18	0.600	0.300	0.150	0.075	A.C.%	
RAP Extraction Results – 75 tests											
AVG YTD	98.9	90.4	65.9	50.7	39.6	29.6	18.6	11.1	6.4	3.98	
STD YTD	0.8	1.9	3.5	3.1	2.6	1.7	1.4	1.1	0.9	0.27	
RAP Shingle Blend Extraction Results – 19 tests											
AVG YTD	98.7	91.5	68.8	54.2	41.5	29.4	17.9	10.1	5.5	6.19	
STD YTD	0.8	1.7	2.1	2.0	1.8	1.5	1.5	1.5	1.2	0.61	

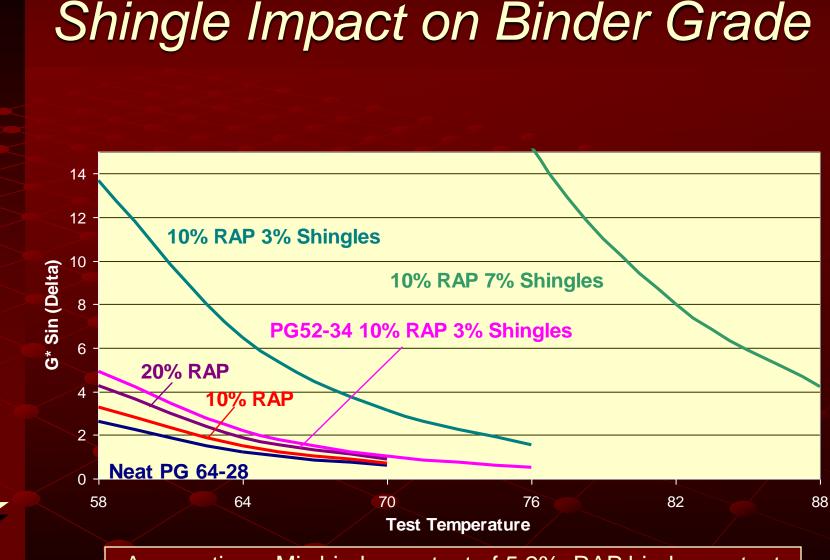
- Most significant concern is proper sizing of the ground Shingle particle
 - Finer is better!
- **Oversized Shingles particles impact:**
 - Contribution to P_{be}
 - Mat texture
 - Consistency of blend with carrier aggregate

Environmental concerns

- Typical concerns for aggregate crushing and HMA production
- HMA with Shingles is recyclable
 - Asbestos screening
 - MA 25 ton lots
 - NJ 5 ton lots
 - Must be Non-detect

Typical Tear-off Shingle Composition

Results shown below were obtained from processed tear-off Shingles


 Gradation and binder contents of Keating manufacturer waste are significantly different
 Gradation is finer with lower binder content

Sample Number	Asphalt	Percent Passing Sieve Size (mm)								
	Content									
	(%)	9.5	4.75	2.36	1.18	0.600	0.300	0.150	0.075	
1	29.1	100	98.6	93.7	70.7	41.4	31.4	22.8	13.8	
2	29.3	100	97.7	91.3	68.5	42.1	33.8	26.4	17.8	
3	31.1	99.4	93.3	86.4	62.9	39.8	29.9	21.1	12.4	
Avg.	29.8	99.8	96.5	90.4	67.3	41.1	31.7	23.4	14.7	

Shingle Impact on Binder Grade

Blending of virgin and recycled binder
 Black rock (paper) vs. homogenous blend?
 Keating binder experiment to determine impact on binders high temperature performance grade

- Two virgin binders used
 PG 64-28 and PG 52-34
- RAP and Shingles recovered binder
 AASHTO T164 and T170 procedures use
 - AASHTO T164 and T170 procedures used
- Materials blended to provide a uniform mixture
- Test temperatures 52°C 86°C
- Results Dynamic Shear G*/Sinδ

Asphalt 100% Recyclable

Assumptions: Mix binder content of 5.2%, RAP binder content of 4.1%, Shingle binder content of 30%

Shingle Impact on Binder Grade Phase II

- Complete performance grading of PG 52-34 and PG 64-28 blended with 10% RAP and 3% Shingles
 - High temperature grading confirmed Keating results
 - Low temperature grade increased by one grade
- Pennsy Supply data on plant mix recovered binder indicates similar results obtained for PG 58-28 blended with 17% RAP and 3% Shingles
 - Delaware DOT results as high as PG 88-22

Test	Criteria	Sample					
Test	Chiena	PG 52-34 10/3	PG 64-28 10/3				
Original Binder							
Rotational Viscosity	3000 cP max	490 cP	1010 cP				
Dynamic Shear	1.0 kPa min	1.83 kPa	1.39 kPa				
Phase Angle	-	81.8°	80.3°				
RTFO Binder Residue							
Mass Loss	1.0% max	0.312%	0.460%				
Dynamic Shear	2.2 kPa min	4.69 kPa	4.78 kPa				
PAV Binder Residue							
Dynamic Shear	5000 kPa max	2392 kPa	1549 kPa				
Creep Stiffness	300 MPa max	162 MPa	93 MPa				
Creep Stiffness Slope 0.300 mir		0.311	0.320				
Resulting Binder Grade							
		PG 64-28	PG 76-22				

Shingle Impact on Binder Grade Phase III

- Complete performance grading of PG 64-28 blended with RAP and Shingles
 - Two mixes: Binder 5.1% AC, Top 5.5% AC
 - Tested various combinations of mix components

		Sample					
Test Criteria		PG 64-28 VRS - B	PG 64-28 VR - T	PG 64-28 VRS - T	PG 64-28 VS - T		
Original Binder							
Rotational Viscosity	3.0 Pa-s	1.165 Pa-s	0.526 Pa-s	1.203 Pa-s	0.863 Pa-s		
Dynamic Shear	1.0 kPa	1.954 kPa	2.021 kPa	1.717 kPa	1.141 kPa		
RTFO Binder Resid	ue						
Mass Loss	1.0%	0.89%	0.80%	0.97%	0.90%		
Dynamic Shear 2.2 kPa		7.094 kPa	7.544 kPa	7.39 kPa	5.069 kPa		
PAV Binder Residue	9						
Dynamic Shear	5000 kPa	4793 kPa	3356 kPa	4822 kPa	3867 kPa		
Creep Stiffness	300 MPa	48 MPa	168 MPa	50 MPa	85 MPa		
Creep Stiffness Slope	0.300	0.334	0.314	0.334	0.309		
Resulting Binder Grade							
		PG 76-16	PG 64-28	PG 76-16	PG 76-22		

17

Shingle Impact on Binder Grade Observations

- Addition of up to 20% recovered RAP binder has little impact on blended binder's high temperature grade
- Addition of recovered Shingle binder has significant impact on binder's high temperature grade
- Relatively low creep stiffness and high creep stiffness slope values for the PG 64-28 RAP Shingle binder suggests an incremental low temperature binder grade lower than -22°C

Fatigue performance of the PG 64-28 RAP Shingle binder should meet requirements for virgin PG 64-28 given the relatively low PAV DSR value

Shingle Impact on Binder Grade Observations

- Black rock (paper) vs. homogenous blend?
 - Some Shingle binder bound in discrete Shingle particles and does not contribute to the mixture's effective binder content
 - Test procedures used do not account for reduced binder contribution from Shingles
- Actual mixture binder grade:
 - High temperature grade higher
 - Low temperature grade higher

Shingle Impact on HMA Volumetrics

- Laboratory experiment using Keating approved Mass Highway top and binder mixes
- Blends tested included:
 - Virgin, Virgin RAP, Virgin RAP Shingles
- Recycled products added as a direct replacement for virgin aggregate resulting in slight variations in gradations
- Mixes compacted to 100 gyrations, data back calculated to 75 gyrations for analysis

	100% Virgin			75% - 25% Virgin - RAP			75% - 20% - 5% Virgin - RAP - Shingles		
Specimen Number	1	2	Avg	1	2	Avg	1	2	Avg
MHD 19.0 mm Dense Binder 5.2%									
Percent Air Voids	3.07	2.87	2.97	2.25	2.17	2.21	4.25	4.22	4.24
MHD 12.5 mm Top Course 5.6%									
Percent Air Voids	3.81	3.97	3.89	3.43	3.83	3.63	4.77	4.53	4.65

Shingle Impact on HMA Volumetrics Observations

- Mix air void rankings the same for both mixes evaluated
 - Virgin RAP, Virgin, Virgin RAP Shingles
- Is all P200 created equally?
 - Is the P200 drying or extending the binder?
 - P200 in the Shingle mixtures is 15 to 25% higher than virgin or virgin RAP mixes (binder 4.0%, top 4.5%)

All mixes were compacted at the same temperature

Effects of recycled materials were not considered

Shingle Impact on HMA Volumetrics Observations

- Lower than expected effective binder content due to the presence of the discrete Shingle chips present in the mix
- Shingle contribution to P_{be} may be impacted by the mix production temperature and the size of the Shingle grind

Recycled materials had significant impact on virgin binder used in these mixtures

 60% virgin binder, 40% recycled binder in both mixes

P.J. Keating Shingles Use Asphalt 100% Recyclable No significant production or placement problems

- Mix predominately supplied to private commercial work
 - Typical use is 5 7% of mix
 - Percentage use is based on mix type, surface vs. binder
 - Marshall and Superpave designs developed
- Shingles used in batch and drum facilities
 - MassHighway allows the use of 5% manufacturer waste shingles in the production of subsurface mixes

P.J. Keating Observations

Issues and concerns noted:

- Shingle sand and Shingle RAP blends tend to retain moisture
- Mix working time reduced
- Material handling
- Shingle tabs can get through grinder
- Lack of general acceptance of this recycling practice
 - Necessitates ability to use multiple recycled products at the same time

P.J. Keating Observations

- Issues and concerns noted (continued):
 - Shingle contribution to the mixture's effective binder content
 - Tilcon NJ discounts by 60%
 - Keating discounts by 20%
 - Increased wear on equipment due to Shingle use
 - Consistency of Shingle supply
 - Tear-offs
 - Manufacturers GAF, IKO, Elk 25k+ tons per year
 - Uniformity of Shingle grind supplied
 - Oversized particles may require screening after grinding
 - Binder content consistency

Asphalt 100% Recyclable

Summary

Shingles can be effectively used in HMA to produce a mix of equal or better quality

 Binder savings in excess of those obtained from RAP use alone appear realistically achievable

Practical issues need to be addressed

- Use of multiple recycled products at the same facility at the same time
- Material storage concerns
- Consistency of Shingles and carrier aggregate blends
- Required environmental testing

Summary

Additional research required

- Development of mix design protocol and standard specifications
 - Considering contribution of Shingles to the mixture's effective binder content
 - Must be volumetrically based
- Determine amount of binder blending and the resulting binder's low temperature performance
 Are different virgin binders necessary?
- Develop database of Shingle mix performance
- Identify hurdles to general acceptance of this type of recycled product